Technology Category
- Analytics & Modeling - Computer Vision Software
- Wearables - Implants
Applicable Industries
- Cement
- Education
Applicable Functions
- Product Research & Development
Use Cases
- Automated Disease Diagnosis
- Disease Tracking
About The Customer
The customer in this case study is the Shiley Center for Orthopedic Research and Education (SCORE) at the Scripps Clinic in La Jolla, California. SCORE is a renowned institution dedicated to advancing the field of orthopedic research and education. They are particularly focused on improving the understanding and design of orthopedic implants, with the ultimate goal of enhancing the quality of life for patients with degenerative joint diseases. Their work involves complex biomechanical modeling and analysis, for which they rely on advanced software tools.
The Challenge
The Scripps Clinic's Shiley Center for Orthopedic Research and Education (SCORE) was faced with the challenge of improving the understanding and design of orthopedic implants, specifically for shoulder arthroplasty. The existing implants, typically made of titanium alloy and lined with plastics, were not expected to last more than 20 years, making them unsuitable for patients under 65. Furthermore, patients often had concerns about the range of motion, strength recovery, and longevity of the new joint. The process of modeling replacements for the meniscus, a crescent-shaped knee cartilage, was also a complex and time-consuming task, requiring the team to start the modeling process from scratch each time they wanted to change the curvature or thickness.
The Solution
SCORE utilized Altair HyperWorks software tools to enhance their understanding of the biomechanics involved in joint replacement. They used Mimics 3D-image processing software to merge CT image slices of a patient’s shoulder into a 3D volume and export the surface of the bone. Using HyperMesh, the team removed the diseased bone from the model of the patient’s shoulder and replaced it with an implant, including the cement that fixes it in position. This helped surgeons choose the best implant product for each patient and refine their surgical techniques. For modeling a meniscus, the team started with a 3D image of the patient’s meniscus, segmented from MRI scans, and used HyperMesh to build a finite-element analysis model of the entire knee. They used mesh morphing to tweak parameters to determine how changes affect contact stresses. Dr. D’Lima also used Altair OptiStruct to model the stress window, a critical factor affecting implant life.
Operational Impact
Quantitative Benefit
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.