Provectus > 实例探究 > 机器学习驱动的票证分类提高了支持效率和贡献者满意度

机器学习驱动的票证分类提高了支持效率和贡献者满意度

Provectus Logo
技术
  • 分析与建模 - 机器学习
  • 平台即服务 (PaaS) - 应用开发平台
适用行业
  • 水泥
  • 教育
适用功能
  • 采购
  • 产品研发
用例
  • 时间敏感网络
  • 虚拟培训
服务
  • 系统集成
  • 培训
关于客户
澳鹏是为大规模构建有效人工智能系统的组织提供高质量培训数据的领先提供商。他们于 2020 年 4 月在其解决方案中集成了Figure 8,这是一个由 AI/ML 支持的人机交互数据转换平台。
挑战
澳鹏需要实现其票务系统的自动化,以提高支持效率、缩短票务处理时间并减少贡献者的流失。手动票务会导致分类错误、增加票证处理时间和贡献者流失。
解决方案
Provectus 构建了一个机器学习驱动的解决方案,可以自动对澳鹏贡献者生成的票证进行分类、确定优先级并解决问题。他们建议构建一个基于 ML 的自动票证分类系统,并将其与 ZenDesk 的路由解决方案相结合。 ML 模型是使用 TensorFlow 构建的,可解决标准文本分类问题。
运营影响
  • The implementation of the ML-driven ticketing system significantly improved Appen's operations. With up to 80% of tickets being categorized and resolved automatically, the Contributor Success team was able to focus on more complex issues, resolving them more quickly and efficiently. The reduction in ticket resolution time from two weeks to less than 24 hours led to increased loyalty among the platform's best contributors. The 10% increase in satisfaction resulted in less churn, indirectly improving the overall quality of training data delivered by Appen to its clients. The team was extremely satisfied with the new system, as it allowed them to prioritize contributor satisfaction, thereby increasing their own performance and productivity and positively impacting Appen's business growth.

数量效益
  • Reduction in ticket resolution time from 2 weeks to less than 24 hours

  • Approximately 80% of tickets are resolved automatically

  • 10% increase in customer satisfaction for contributors

Case Study missing?

Start adding your own!

Register with your work email and create a new case study profile for your business.

Add New Record

相关案例.

联系我们

欢迎与我们交流!
* Required
* Required
* Required
* Invalid email address
提交此表单,即表示您同意 IoT ONE 可以与您联系并分享洞察和营销信息。
不,谢谢,我不想收到来自 IoT ONE 的任何营销电子邮件。
提交

感谢您的信息!
我们会很快与你取得联系。