自主机器人
概述
自主机器人是智能机器,能够独立于人类直接控制或固定编程执行世界任务。示例范围从自主无人机到工业生产机器人,再到机器人真空吸尘器。它们结合了人工智能、机器人技术和信息科学领域的专业知识。自主机器人必须具备感知环境、分析态势数据的能力,以便根据其感知做出决策,然后根据这些能力修改其行为决定。例如,自主的范围可能包括启动、停止、绕过障碍物、与障碍物通信以及使用附属物操纵障碍物。今天很少有自主机器人在运行。即使是最复杂的动态机器人,例如汽车工厂中使用的机器人,也会根据静态编程进行操作。大多数自主机器人只是半自主的,即使更基本的自主在技术上变得可行,也可能会保持这种状态。例如,Roomba 真空吸尘器不会按照预先设定的路线移动,而是可以随着环境的变化动态地修改其路线。但是,它的自由度非常有限,这是由其编程决定的。
适用行业
- 重型车辆
- 汽车
- 设备与机械
适用功能
- 离散制造
市场规模
商业观点
自主机器人何时实用?
当满足以下两个标准之一时,自主机器人特别有用:
1. 环境对人类来说要么是危险的,要么是昂贵的。例如,航天和扫雷都是人类活动的危险领域。由于在太空中支持人类生活的成本,太空飞行也非常昂贵。
2. 该任务需要简单、常规的大量动作和适度的动态调整。例如,商店到门的货物交付和公路货运都是常规活动,但需要能够在一系列可能性内对意外情况做出反应。同样,在生产环境中,机器人执行大量重复的动作,但必须响应不可预测的变量,例如它正在组装的组件的精确方向,或修改任务以定制订单。
自主机器人的核心功能是什么?
自主机器人的概念很广泛,可以包括具有不同功能的各种设备。但是,任何自主机器人都应该具备执行以下基本功能的能力:
1. 收集和处理有关环境的信息。
2. 在不可预知的刺激下长时间工作,无需人为干预。
3. 在没有人工协助的情况下(但有预先确定的限制)在其操作环境中移动。
4. 避免被程序识别为不受欢迎的情况,例如对人、财产或自身的伤害。
更先进的机器人可能能够在通过处理数据“学习”时优化其效率或添加新功能。机器人的能力也可以通过集体数据处理实现的系统升级来提高。例如,车队可以接收定期更新,根据在不同驾驶条件下对其集体运营数据的处理,逐步提高燃油效率。
案例研究.
Case Study
Siemens | Using Machine Learning to Get Machines to Mimic Intuition
The ability to learn is a precondition for autonomy. With this in mind, Siemens researchers are developing knowledge networks based on deep learning-related simulated neurons and connections. Such networks can be used to generalize information by identifying associations between extraordinarily complex realms, such as the publicly accessible Internet and a company’s internal information systems. Far-reaching and generic, this technology appears to hold the potential of mimicking what humans call intuition.
Case Study
Wireless Module Transforms NASA Robot into Space Station Crew
The second-generation Robonaut, Robonaut 2 is a torso bolted to a pedestal and is connected to the station with wires for power and control. NASA wanted a solution to make the robot wireless so that it can move freely throughout the station and be more useful, and save astronauts' precious time.
Case Study
Metal Fabrication
As each mast section needs a total of 222 reliable welds, manufacturing them is an extremely labor intensive process.Until recently, STROS had to use highly skilled welders to make these sections. Although it has been using robots for 25 years, these machines could not manage the complex arc welds in narrow spaces needed for these particular components. Consequently, in order to produce a satisfactory number of mast sections it had to employ three welders per shift at three separate workstations to make these pieces. Apart from the obvious outlay this required in terms of manpower and space, STROS found it increasingly difficult to recruit the highly qualified welders needed for this work. That's why in 2007 the company decided to hold a tender for the complete robotization of its manufacturing process for mast sections. Of the four firms who participated, only the ABB group could fulfill all its requirements.