技术
- 分析与建模 - 过程分析
- 分析与建模 - 机器人过程自动化 (RPA)
适用行业
- 汽车
适用功能
- 产品研发
- 质量保证
用例
- 租赁金融自动化
- 物料搬运自动化
服务
- 测试与认证
关于客户
OPEL 是一家在全球运营的著名汽车原始设备制造商 (OEM)。该公司以其创新的设计和制造方法而闻名,不断寻求提高效率和生产力的方法。 OPEL 致力于为客户提供高质量的产品,因此始终寻找优化其流程的方法。该公司将发动机悬置系统的设计过程视为过程自动化的一个潜在领域,目的是缩短计算机辅助工程(CAE)周期时间,在标准化工作流程中捕获和重用知识,并快速提高最终产品质量。
挑战
全球汽车原始设备制造商 (OEM) 正在努力应对缩短计算机辅助工程 (CAE) 周期时间的挑战。这是由于汽车品种的不断增加、数据量的激增以及激烈的竞争压力。为了应对这些挑战,欧宝将发动机悬置系统的设计过程确定为过程自动化的潜在领域。目标是让 NVH 工程师即使没有详细的载荷工况信息也能生成输入面板。必须在标准化工作流程中捕获和重用知识。此外,安装参数的自动优化和稳健性分析必须集成到流程中,以快速提高最终产品质量。
解决方案
Altair ProductDesign 的过程自动化团队使用 HyperWorks 的模块化自动化框架,为 OPEL 开发了名为“Engine Mount Studio”的定制自动化解决方案。 Engine Mount Studio 指导工程师完成数据收集和管理、分析设置和运行、后处理和参数优化的过程。用户输入所需的负载情况组合和车辆变型,以及安装座的属性。在优化模块内,可以优化安装位置和属性等参数。该解决方案目前正被 CAE 和测试工程师用于中小型汽车项目的生产中。
运营影响
Case Study missing?
Start adding your own!
Register with your work email and create a new case study profile for your business.
相关案例.
Case Study
Integral Plant Maintenance
Mercedes-Benz and his partner GAZ chose Siemens to be its maintenance partner at a new engine plant in Yaroslavl, Russia. The new plant offers a capacity to manufacture diesel engines for the Russian market, for locally produced Sprinter Classic. In addition to engines for the local market, the Yaroslavl plant will also produce spare parts. Mercedes-Benz Russia and his partner needed a service partner in order to ensure the operation of these lines in a maintenance partnership arrangement. The challenges included coordinating the entire maintenance management operation, in particular inspections, corrective and predictive maintenance activities, and the optimizing spare parts management. Siemens developed a customized maintenance solution that includes all electronic and mechanical maintenance activities (Integral Plant Maintenance).
Case Study
Monitoring of Pressure Pumps in Automotive Industry
A large German/American producer of auto parts uses high-pressure pumps to deburr machined parts as a part of its production and quality check process. They decided to monitor these pumps to make sure they work properly and that they can see any indications leading to a potential failure before it affects their process.